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Abstract—In this paper, we consider to improve scientific workflows in cloud environments where data transfers between tasks are

performed via provisioned in-memory caching as a service, instead of relying entirely on slower disk-based file systems. However, this

improvement is not free since services in the cloud are usually charged in a “pay-as-you-go” model. As a consequence, the workflow

tenants have to estimate the amount of memory that they would like to pay. Given the intrinsic complexity of the workflows, it would be

very hard to make an accurate prediction, which would lead to either oversubscription or undersubscription, resulting in unproductive

spending or performance degradation. To address this problem, we propose a concept of minmax memory claim (MMC) to achieve

cost-effective workflow computations in in-memory cloud computing environments. The minmax-memory claim is defined as the

minimum amount of memory required to finish the workflow without compromising its maximum concurrency. With the concept of

MMC, the workflow tenants can achieve the best performance via in-memory computing while minimizing the cost. In this paper, we

present the procedure of how to find the MMCs for those workflows with arbitrary graphs in general and develop optimal efficient

algorithms for some well-structured workflows in particular. To further show the values of this concept, we also implement these

algorithms and apply them, through a simulation study, to improve deadlock resolutions in workflow-based workloads when memory

resources are constrained.

Index Terms—Minmax memory claim, in-memory caching, deadlock avoidance, memory constraints, workflow scheduling
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1 INTRODUCTION

DUE to the benefits of cloud computing with respect to
its elasticity, small start-up and maintenance costs, and

economics of scale, the interest in deploying scientific work-
flows in cloud platforms has been kept ever-growing over
the past few years [1], [2], [3].

A scientific workflow generally consists of a set of data-
dependent tasks, forming a weighted directed acyclic graph
(DAG), also called workflow graph, to carry out a complex
computational process. The nodes in the workflow graph
represent tasks (e.g., executable or a script) that accomplish
a certain amount of work in the workload, and edges denote
the data channels used to transfer data volume from source
node to target node. In a cloud-based workflow computa-
tion, the data channels are typically implemented via an

external provisioned storage system (e.g., a file system),
which could incur substantial disk I/O overhead that can
dominate the execution times [4], [5].

To address this issue, in-memory caching utility in the
cloud provides an effective way, which aggregates massive
memory resources across a dedicated cluster of servers to sup-
port all the data managements via a middleware software [6],
[7]. With in-memory caching, the workflow computation
could transfer data between tasks via fast, managed, in-
memory caches, instead of relying entirely on slower disk-
based file systems. Compared with disk read/write opera-
tions, this enhancement could come with potentially several
orders of magnitude better end-to-end latency, and thus sub-
stantially improve the overall performance of theworkloads.

Although the performance advantage of the in-memory
cloud computing for scientific workflows is prominent, it
does not come with no cost since services in the cloud are
usually charged according to a “pay-as-you-go” fashion. As
a consequence, the workflow tenants have to estimate the
amount of caching memory that they would like to pay.
Given the intrinsic complexity of the workflows, it would
be very hard, if not impossible, for the workflow tenants to
make accurate reservations on the resources to be used.
Sub-optimal subscription would result in either unproduc-
tive spending (oversubscription) or performance degrada-
tion (undersubscription).

To address this problem, we propose a concept of Min-
Max-Memory Claim (MMC) in this paper, which is defined as
the minimum required memory resources for the workflow
computation without compromising its maximum task con-
currency (also the performance), The MMC is desirable for
cost-effective computing in the cloud because the amount of
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memory provisioned over the MMC threshold cannot make
any performance contributions. As such, it is very beneficial
to those who intend to have maximized performance while
minimizing the budget for the workflow computation in the
cloud.

Fig. 1a is an example workflow graphwhere the weighted
edges represent the resources used to create memory chan-
nels for communication between tasks. Tomaximize the con-
currency of the workflow, we have to satisfy a minimum
memory requirement. Fig. 1b shows when tasks B and E exe-
cute concurrently with their input and output channels occu-
pied to maximum, the MMC reaches 31 memory units (A
and C are finished, and their allocated memory has been col-
lected as it is no longer used by the subsequent tasks). Again,
this value is the minimum memory capacity to ensure the
maximumDOC of this particular workflow graph.

As for the MMC of workflow graph in general form, in
this paper we provably reduce its computation to finding a
maximum weighted clique in a general graph that is derived
from the original workflow graph by applying certain trans-
formations. To tackle the intractability of this problem [8],
in this paper, we focus squarely on certain well-structured
workflows in reality [9], [10], [11], and exploit their graph
structures to design efficient optimal algorithms.

The MMC is not a fixed value, rather, it is monotonically
decreased as more tasks in the workflow are finished during
the computation. Therefore, in practice whenmultiple work-
flow instances execute concurrently, it is not necessary to
allocate memory resources to each workflow instance in
alignment with its maximum MMC, which could further
reduce the cost. This dynamic computation of the MMC is
particularly valuable for multi-tenant environments when
multiple workflow instances from different tenants run con-
currently on the shared caching memory. However, in this
situation, deadlock is a minimal pragmatic concern in avoid-
ing the performance inference between concurrent instances,
and how to resolve it is also a challenge. For example, given
resource budget of 31 units in Fig. 1, deadlock could happen

if two workflow instances are executed concurrently and the
memory resources are allocated in a misguided way. For
instance, if 9 units are allocated to the first instance and 22

units are left to the second, in this case no one is sufficient to
make progress, and both instances fall into a deadlock state.

As an example to show the value of the MMC in cost
reduction and performance maximum in multi-tenant envi-
ronments, we leverage the concept to extend the banker’s
algorithm to deadlock avoidance in multiple concurrent
workloads. With simulation studies, we show that the pro-
posed algorithms not only dominate the compared algo-
rithms with respect to deadlock resolution but also exhibit
some advantages over them to potentially improve overall
workload performance.

In summary, we make the following contributions.

1) We propose a concept of minmax memory claim for
computational workflow to quantify its minimum
required memory resources for maximum concur-
rency and performance.

2) We present the procedure how to find the claims for
those workflows with arbitrary graphs in general
and develop optimal efficient algorithms for three
selected representative workflows in particular.

3) We exploit the proposed concept to optimize the
banker’s algorithm for deadlock avoidance in work-
flow computation.

4) We implement the algorithms and apply them,
through a simulation study, to deadlock avoidance
in workloads that consist of a number of concurrent
instances in the cloud.

The rest of the paper is organized as follows. We over-
view some related work in the next section and describe the
computational model of workflow computation in Section 3.
After that, we present our algorithms to MMC in Section 4
and its application in Section 5. We evaluate the proposed
algorithms through a simulation study in Section 6, and
conclude the paper with some future work in Section 7.

2 RELATED WORK

There are a plethora of studies on the bounded memory
computing in the realm of high-performance computing
(HPC) systems, each being from different angles and adopt-
ing different approaches [12], [13], [14], [15], [16]. However,
almost all of them, based on our overview, are oriented to
those memory intensive programs in which most of the
time is spent waiting for memory operations to complete,
instead of the maximum required memory size, the concern
in this paper. The main reason to account for this phenome-
non, in our opinion, is simply the evolution of memory tech-
nology that renders the relevance of memory capacity for
HPC applications gradually decreased. However, this situa-
tion is experienced a great change when considering HPC
applications in the cloud whose compute resources are pro-
visioned on demand as per “pay-as-you-go” billing model.
Memory is a precious resource in cloud platforms, espe-
cially in clouds whose in-memory caching or computing is
usually provisioned as a service [17]. Given this fact, mem-
ory resources, together with other compute resources (e.g.,
processors, storage, and networks), are always optimized to
improve their utilization in an economic way via so-called

Fig. 1. An example of workflow graph and its minmax memory claim. The
Nodes represent tasks and the weighted edges represent the memory
resources used to create the data channels in the cloud for communica-
tion between tasks. In (b), A and C are finished, and B and E are
concurrently running.
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cost-effective scheduling algorithms, when deploying work-
flow computation in the cloud [18], [19], [20]. Although
these studies are resource-centric, and improve its utiliza-
tion in diverse contexts, no one delve into the problem from
our angle to improve the workflow-based computation in
the cloud with the concept of MMC.

There exist some infrastructures that could be used to
facilitate in-memory computing in the cloud. Tachyon [21]
is a memory-based file system with supports of re-computa-
tion technique to facilitate reliable data sharing across jobs.
Similarly, Amazon ElastiCache [17] as an on-demand ser-
vice can add an in-memory caching layer to compute infra-
structure for performance optimization. Both techniques
can provide workflow computations with efficient in-
memory caching services even though each has its own
overhead in doing so.

Computation and memory substrate coupled architec-
tures, such as Spark/RDD [22] and GPI-Space [23], are
promising for in-memory computation. Spark/RDD [22] is
an open-source cluster computing framework that leverages
its multi-stage in-memory primitives to achieve perfor-
mance up to an order of magnitude faster compared with
its disk-primitive counterpart (say Hadoop). GPI-Space [23]
is a more recent example that is capable of doing all parallel
computation in memory via a virtual memory layer to omit
the higher latencies and performance bottlenecks of tradi-
tional I/O. Although these studies are resource-centric, and
improve its utilization in diverse contexts, no one delve into
the problem from our angle to improve the workflow-based
computations in the cloud with the concept of MMC.

A study bearing a similarity in spirit to ours is BLAZE [6],
[7], which is a simple multi-tenant data cache scheme des-
igned to guarantee a minimum cache memory share for each
tenant to boost concurrency. TheMMC scheme goes a further
step that targets the minimum share for the workflow work-
loads, but unlike BLAZE, it does not consider the proportional
allocation of cache memory shares among multiple tenants.
Chiu et al. [24] investigate elastic cloud caches for accelerating
service-oriented computations where the cache system can be
scaled up during peak querying times, and back down to save
costs in other cases. In contrast, the cache memory considered
in our case is not elastic, instead, it is determined by theMMC
and fixed during the computation. However, with the pro-
posed deadlock resolution, it can be fully utilized to support
multiple concurrent workflow instances for cost saving.

Leveraging dynamic resource requirements to improve
the overall resource utilization can be dated back to the early
research to improve the banker’s algorithm with respect to
its effectiveness in safety checking [25], [26]. Lang looks at
this problem in multiprocessor systems where the control-
flow of a workflow is modeled as a rooted-tree-like resource-
request graph. In Lang’s algorithm, the dynamic maximum
resource claim (e.g., MMC in our case) is approximated by
the localized maximum requirements of the induced sub-
graph to be executed (i.e., region) [26] as opposed to the total
requirements of the whole control-flow graph (i.e., the work-
flow). Lang’s algorithm then uses this dynamic requirement
as the localized maximum claim for each scheduled work-
flow instance to improve the banker’s algorithm for deadlock
avoidance. Although Lang’s algorithm can be applied to
memory resources, and compared to the banker’s, is effective

in resource utilization, it suffers from the limitation with
respect to the structure of the resource-request graph and
cannot be used for generalDAG-basedworkloads.

As for those tasks with general resource-request graphs,
Wang and Lu [27] develop two dataflow-based algorithms,
namely DAR and DTO, for avoiding the deadlock issue in
concurrent task executions where the data channels are cre-
ated in an external file system. In DAR, the minmax resource
claim for each task’s safety check is upper bounded by
aggregating the storage resource requirements, defined by
the remaining tasks to be executed, while in DTO, the data-
flow knowledge is exploited to compute the dynamic maxi-
mum claim by topologically ordering the tasks during the
safety check. DAR can maximize the concurrency but it is
not quite effective in resource utilization due to its conserva-
tiveness in (over-)estimating the localized maximum claim.
In contrast, DTO can minimize the storage resources, but it
is incapable of identifying the minimum resources to guar-
antee the concurrency.

As a consequence, our results can be viewed as an
improvement to the existing findings from a perspective
of shared in-memory caching service where workflows
with general DAGs can maximize their performance with
minimum memory resources without caring about the
deadlock issues.

3 COMPUTATIONAL MODEL

3.1 Workflow Model

We model a workflow as a workflow graph, a weighted DAG,
GðV;EÞ, where V represents a set of nodes and E a set of
edges. A node in the DAG represents a task which in turn
allocates memory, performs computation, and then deallo-
cate memory in a sequential order without preemption. The
weight of a node v 2 V is called computation cost, denoted by
mðvÞ. An edge eij 2 E represents a data channel for data
delivery from node v to node u; u 2 OutðvÞ, here OutðvÞ is
v’s out-edge neighbors; its weight wðeijÞ indicates the size of
the data volume. The communication between nodes could
be achieved by following the producer-consumer model, that
is, if node v needs to communicate with node u 2 OutðvÞ, it
(producer) writes the data to the corresponding data chan-
nel, which will be read by node u (consumer). As such, each
node v is associated with a read set and a write set, denoted

respectively as Rv ¼ fr1v; . . . ; rkvg andWv ¼ fw1
v; . . . ; w

l
vg. The

claim on the required data channel resources by node vi is,
therefore, known a prior and can be computed as bv ¼Pk

j¼1 jrjvj þ
Pl

j¼1 jwj
vj where jrj and jwj indicate the sizes of

the set r and w, respectively.
The precedence constraints of a DAG dictate that the

nodes are strict with respect to both their inputs and their
outputs in the sense that a node cannot begin execution
until all its inputs have arrived and no outputs are available
until the node has finished and at that time all outputs are
simultaneously accessible to its destination nodes. The node
and edge weights as well as the shape of the workflow
graph are determined by application and not changed dur-
ing the computation. In this research, for performance
optimization, we are particularly interested in leveraging
the in-memory caching as a service to implement the data
channels, instead of using the underlying file system as did
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in traditional method. Thus, the effective use of the service
in an economical way is always a concern.

Without loss of generality, a single source task and a sin-
gle sink task are assumed in the workflow graph.1 These
two nodes can be viewed as the tasks in the graph that stage
in the initial inputs and stage out the result outputs, respec-
tively. Also, given the requirements that the memory chan-
nel resources are reclaimed immediately whenever they are
no longer used by the subsequent nodes, the net amount of
memory after the workload computation is zero. Hereafter,
we use the terms node and task interchangeably.

3.2 Execution Model

Our execution model is built on top of a virtual cluster as
shown in Fig. 2, which consists of a collection of virtual
machines (aka. nodes) that have been configured to act like
a traditional cluster. This typically involves installing and
configuring job management software, such as a batch
scheduler, and a shared storage system (e.g., network/dis-
tributed file system) [3]. In our particular context, the shared
storage network of nodes (possibly disjoint from the net-
work of compute nodes) is composed of in-memory caching
storage nodes that are aggregated via the middleware to
provide a globally shared in-memory caching service.

During the execution of a workflow instance, the life
cycle of a task may experience several states. Initially, all the
tasks in the workflow instance are in blocked state. A task
becomes free if it has no parent tasks or all its parent tasks
have been completed. Every free tasks can be scheduled but
only those who have memory resources to accommodate
their outputs enter the ready state for execution. Otherwise,
they will be in pending state waiting for the availability of
the memory resources. Of course, as soon as the required
memory resources are available and also the MMC-based
deadlock resolution is successfully triggered and com-
pleted, the tasks in pending state can be changed to ready
state for execution again. The tasks in the running state are
never stopped until they complete the computation. After a
task has completed, it enters done state. A completed task
will release the memory resources occupied by its inputs
only which can be reclaimed for other tasks’ executions, but
keeping the memory resources as memory channels for the
outputs used by the later tasks.

Our model is deterministic, at least to the extent that the
time, memory resources required by any task as well as the
data dependencies among the tasks are pre-determined and
remain unchanged during the computation as well.

4 MINMAX-MEMORY CLAIM ALGORITHMS

4.1 Basic Ideas

The basic idea of the proposed algorithms is first to aug-
ment the workflow graph with an edge-node transformation
and compute the Maximum Weighted Concurrent Set
(MWCS) of the augmented workflow graph, then provably
show the MWCS is the MMC of the original workflow
graph. The weight of the MMC could be further used as the
maximum claims of the remaining tasks in the instance for
deadlock avoidance. The MMC-based algorithm is less con-
servative in memory utilization than the existing ones [27],
[28], but suffering from intractability as it is equivalent to
finding aWeighted Maximum Clique (MWC) in a derived graph
built from the augmented graph, and thus losing efficiency
in the deadlock resolution.

To deal with the intractability and also show the values of
the MMC concept, we select two commonly used workflow
graphs in scientific computation, lattice and fork&join, and
design efficient algorithms to compute their optimal MMCs.
With these algorithms, we further improve the classic bank-
er’s algorithm for deadlock avoidance among concurrent
workflow instances in the cloud. The results can be also eas-
ily extended to other workflowswith regular shapes.

4.2 MinMax Memory Claim

4.2.1 Basic Definition

At any time instance t during the computation, we can clas-
sify the nodes in the graph into three groups:

(1) Done(t): the nodes that have been completed prior to t.
(2) Running(t): the nodes in V �DoneðtÞ that are run-

ning concurrently at t
(3) Blocked(t): the remaining nodes at t, i.e., V �

ðDoneðtÞ [RunningðtÞÞ.
Accordingly, we can define the amount of memory resour-
ces that held in each set of nodes as follows:

’d!rðtÞ ¼
X

vi2DoneðtÞ;vj2RunningðtÞ
wðeijÞ; (1)

’d!rðtÞ is the total memory resources that are created by
DoneðtÞ and being used by RunningðtÞ at t

’d!bðtÞ ¼
X

vi2DoneðtÞ;vj2BlockedðtÞ
wðeijÞ: (2)

Similarly, ’d!bðtÞ is the total memory resources that are cre-
ated byDoneðtÞ and will be used by BlockedðtÞ at t

’r!bðtÞ ¼
X

vi2RunningðtÞ;vj2BlockedðtÞ
wðeijÞ: (3)

Finally, ’r!bðtÞ is the total memory resources that are cre-
ated by RunningðtÞ and will be used by BlockedðtÞ at t. As a
consequence, the Minmax Resource Claim at time t is deter-
mined by the maximum of ’d!rðtÞ þ ’d!bðtÞ þ ’r!bðtÞ,

Fig. 2. Cluster architecture in the cloud for workflow computation. The
middleware is used to construct a globally shared in-memory caching
service by aggregating the collection of in-memory caching servers.

1. Any workflow can have such tasks used for data staging in and
staging out, respectively.

HE ET AL.: USING MINMAX-MEMORY CLAIMS TO IMPROVE IN-MEMORY WORKFLOW COMPUTATIONS IN THE CLOUD 1205



which is also the minimum memory resources to ensure the
maximum concurrency of the workflow. Thus, we define
the MMC of the workflow graph GðV;EÞ as

MMCðGÞ ¼ max
t2½0;l�
f’d!rðtÞ þ ’d!bðtÞ þ ’r!bðtÞg; (4)

where l represents the makespan of the workflow instance.
An example of these definitions is shown in Fig. 1b where at
a particular time t, Done(t)={A,C}, Running(t)={B,E},
and Block(t)={D,F} Furthermore, ’d!rðtÞ ¼ eAB þ eCE ¼
15, ’d!bðtÞ ¼ eCD ¼ 3, and ’r!bðtÞ ¼ eBD þ eEF ¼ 13. Then
MMC(G) = 15 + 3 + 13 = 31.

4.2.2 Our Solutions

Intuitively, we can identify the Maximum Weighted Concur-
rent Set of the (directed) graph and aggregate its weights as
the MMC. However, this method is not always correct as
some memory channel resources which will be used in the
subsequent tasks could not be counted, e.g., in Fig. 1b, the
memory channel between nodes C and D (i.e., eCD) could be
missed and select the concurrent nodes B and C as theMMC.

Alternatively, we can leverage the weighted nodes to
compute the maximum time-frame, from the earliest start to
the latest end, for each memory channel that needs to be
maintained for the subsequent computation, and then
sweep along the time axis to accumulate the memory chan-
nels as the MMC. Unfortunately, this strategy is still incor-
rect as the workflow graph is stretchable along the time axis
during the computation, which leads to the inaccuracy of
the sweep approach.

Therefore, to address this problem, we have to find other
solutions. The basic idea of our approach is similar to the
one that finds the MWCS in the workflow graph, but with
an extension to count the weights of those edges that span
across the frontier of the concurrent task set (e.g., ’d!b) as
well. To this end, we first augment the workflow graph via
an edge-node transformation, and then find its MWCS,
which is equivalent to finding the Maximum Weighted Clique
in a derived graph created from the augmented graph.

Given a workflow graph GðV; EÞ, we define an aug-
mented workflow graph G0ðV 0; E0Þ with the following edge-
node transformations:

1) for each node v in GðV;EÞ, define wðvÞ ¼ bv;
2) for each edge e in GðV;EÞ, add a dummy node ve on

the edge with a weight defined as wðveÞ ¼ wðeÞ, and
in the meanwhile, clear the edge weight (i.e., the aug-
mented workflow graph is only node weighted).

This transformation can be completed within OðjV j þ jEjÞ
time to create G0ðV 0; E0Þ where V 0 ¼ V [ fveje 2 Eg and
E0 ¼ fe0je0 ¼ ðu; veÞ þ ðve; vÞ where e ¼ ðu; vÞ 2 Eg. With this
transformation we also clearly have jV 0j ¼ jV j þ jEj and
jE0j ¼ 2jEj.

An example of augmented workflow graph is shown in
Fig. 3a where the workflow graph in Fig. 1a is augmented.
The essence of this transformation is to convert finding
MWCS with respect to nodes to finding it with respect to
edges by treating each edge as a weighted dummy node in
the augmented graph.

With the augmented workflow graph, we have the fol-
lowing theorem,

Theorem 4.1. The weight of the MWCS of the augmented work-
flow graph is equal to the MMC of the original workflow graph,
i.e.,WðMWCSðG0ÞÞ ¼MMCðGÞ.

Proof. The proof is straightforward as for the weighted con-
current set WCSðtÞ at time instance t in G0ðV 0; E0Þ, its
occupied memory resources must belong to some active
tasks which are running concurrently (i.e., ’d!rðtÞþ
’r!bðtÞ) or certain memory channels that have been cre-
ated for later uses (i.e., ’d!bðtÞ). As such, we have

WðWCSðtÞÞ � ’d!rðtÞ þ ’d!bðtÞ þ ’r!bðtÞ:
By applying the similar logic, the reverse argument is
also correct, i.e., the size of occupied memory resources
by concurrent running tasks and memory channels at t is
not greater than the weight ofWCSðtÞ.

Overall, there is one-to-one mapping between the
occupied memory resources of the original workflow
graph GðV;EÞ and the weight of concurrent set in the
augmented graph, G0ðV 0; E0Þ i.e.,

WðWCSðtÞÞ ¼ ’d!rðtÞ þ ’d!bðtÞ þ ’r!bðtÞ; (5)

whereby we can conclude the theorem by maximizing
both sides of Eq. (5) in terms of t over the workflow
makespan. tu
The main ingredient of our algorithm is to compute

MWCS on G0, which is equivalent to finding MWC in a
derived graph G00ðV 00; E00Þ obtained by following transforma-
tions on the augmented graph G0ðV 0; E0Þ:
1) given G0ðV 0; E0Þ, we first compute its all-pairs of

paths via graph traversal within OðjV 0j þ jE0jÞ time
and QðjV 0j þ jE0jÞ space where the length of the path

Fig. 3. An example of workflow augmented DAG of Fig. 1a and its
derived graph for computing the maximum weight clique. The nodes
with subscripts are dummy nodes, such as A1. MWCS = {B,C1,E} and
MWC = {B,C1,E}.
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is defined as the total number of hops along the path.
However, if there is no directed path between the
pair, the length is þ1.

2) based on the results of Step 1, we derive an undi-
rected graph G00ðV 00; E00Þ from G0ðV 0; E0Þ by adding
an undirected edge between any pair of nodes with
distance þ1 in G0ðV 0; E0Þ, and then remove all
directed edges in G0ðV 0; E0Þ, which could be finished

in OðjV 0j2Þ,
3) compute the MWC of G00ðV 00; E00Þ as the MWCS of

G0ðV 0; E0Þ.
The first step is to identify those pairs of nodes that can be
executed concurrently. This step is only executed once for
each graph with in. Note that the concurrency relationship is
not transitive, so we have to search the MWC in the derived
graph to ensure that all the selected clique nodes can be exe-
cuted concurrently in the augmented workflow graph.
Fig. 3b shows an identified MWC in the corresponding
derived graph of Fig. 3a whoseweight is 12 + 3 + 16 = 31.

Finding MWC in a general graph is a well studied prob-
lem, and it can be optimally solved by some existing algo-
rithms [29], [30]. However, this problem is a typical NP-hard
problem [8], and its optimal algorithms are not efficient.
Therefore, either heuristics or optimal algorithms for some
special graphs are always used in reality. In this study, we
adopt the later strategy with focus on three special com-
monly-modeledworkflows in scientific computations.

4.2.3 Optimal Algorithms for Selected Workflows

We study three representative workflows in molecular
dynamics [9], bioinformatics [10], and medical image proc-
essing [11], each workflow could be modeled by pipeline,
fork&join, and lattice, respectively as described in Table 1.
The key point of this study is to transform the workflow

graphs and exploit the features of the transformed graphs to
compute their MWCSs in an efficient way. This computation
could form the basis for computing other workflows that can
be decomposed into the studied shapes. The SciEvol work-
flow for molecular evolution reconstruction can be viewed
as a pipeline workflow followed by a fork&join workflow to
infer evolutionary relationships on genomic data [31].

The selected Proteome Analyst (PA) [10] can be modeled as
a fork&join workflow as shown in Fig. 4, The workflow first
accepts a proteome2 in the form of a text string, and then uses
BLAST [32] to find the homologs among known proteins for
each given protein. During this process PA also gains infor-
mation about InterPro3 families, which can also provide
information about homology. PA uses this information to
predict the classes of proteins. More specifically, the feature
extraction programs (i.e., Feature Extractions in Fig. 4) take the
homologs as the input and use different algorithms to extract
some keywords or annotations as features. The extracted fea-
tures are classified by different trained classifiers to determine
the function and the localization for each query sequence
within the cell. Finally, the program Summary gathers, sum-
marizes and presents the outputs from various classifiers.

As described, the PA workflow is characterized by the
number of stages and fan-out factors, exhibiting near-con-
stant degree of concurrency (DOC) and can be taken as a
representative of a large class of problems with a pipeline of
parallel phases, including MapReduce workflows and other
applications [9], [10]. Computing the MWCS for the fork&-
join graph is relatively easy since its augmented graph can
be transformed into a rooted tree by u, denoted as WðuÞ,
and then solved by recursion 6 as follows in linear time and
space complexity to aggregate the maximal weights of con-
current nodes in each sub-tree:

WðuÞ ¼ max

(
wðuÞ;

X
v2NðuÞ

WðvÞ
)
; (6)

TABLE 1
Three Typical Workflow Applications: Gromacs, Proteome

Analyst and Bronze Standard Medical Imaging

Application Function Shape

Gromacs [9]

A molecular dynamics
simulation package to sim-
ulate the Newtonian equa-
tions of motion for systems
with hundreds to millions
of particles

pipeline

Proteome Analyst
(PA) [10]

A bioinformatics tool to
predict protein properties
such as the general func-
tion and the subcellular
localization of proteins
using machine learning
techniques

fork&join

Bronze Standard
Medical Imaging
(BSMI) [11]

A data intensive medical
image processing applica-
tion developed to over-
come the difficulties of
evaluating the accuracy
and robustness of image
processing algorithms
when the reference image
is not available

lattice
Fig. 4. An example of a typical PA workflow chart.

2. A blend of proteins and genome that is often used to describe the
entire complement of proteins expressed by a genome, cell, tissue or
organism.

3. InterPro is an integrated documentation resource for protein fami-
lies, domains and functional sites.
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where node u is the root of the (sub-)tree with weight of
wðuÞ andNðuÞ is the child set of node u.

The medical image processing workflow (BSMI) [11] is a
data-intensive medical image processing application devel-
oped to overcome the difficulties of evaluating the accuracy
and robustness of image processing algorithms when the
ground truth (i.e., reference image) is not available. The
workflow is assembled from a set of basic tools (i.e., jobs,
see Fig. 5a), each having its own function to process the
data, extract quantitative information and analyze results.
The workflow can be simplified to be a lattice-like workflow
shown in Fig. 5b.

To fully study the MMC on this structure, we extend it to
a general lattice structure, characterized by its width and
height, exhibits variable concurrency, where the concur-
rency increases initially to a maximum degree and then
decreases progressively. A variety of dynamic program-
ming algorithms and numerical computation workflows
have a lattice structure [11], [33]. An example of ð4� 5Þ a
general lattice workflow is shown in Fig. 6.

To compute MWCS in an augmented lattice ðn�mÞ,
we model the problem by defining a weight matrix M as
follows:

M ¼

b00 b01 � � � � � � b0m
b10 b11 � � � � � � b1m
� � � � � � bij � � � � � �
� � � � � � � � � � � � � � �

bðn�1Þ0 bðn�1Þ1 � � � � � � bðn�1Þm

0
BBBB@

1
CCCCA;

in which according to themodel in Section 3, bij ¼
Pk

s¼1 jrsjþPl
s¼1 jwsj; 0 � i < n; 0 < j � m, which is the memory

weight of node nij. Note that if bij is a dummy node created
by connecting edge nodes, its weight is assumed to be�1 so
that it will never be selected. For example, if nodes
7,9,3,13 are edge nodes, the weight of node 8 is�1.

Based on the M, the MWCS of lattice ðn�mÞ is equiva-
lent to finding a set of bij; 0 � i < n; 0 < j � m that satisfies

max
X

0�i<n;0<j�m
bij; (7)

subject to the restrictions:

1) no more than one element of b can be selected for
each raw and column;

2) if some bij is selected, the next element must be only
selected from the matrixM½0 . . . iþ 1; j� 1 . . .m�;

3) if bij is not selected, the next element must be only
selected from the matrixM½0 . . . iþ 1; j . . .m�.

Clearly, these restrictions are resulted from the data depen-
dencies in the lattice, and based on which, we have the fol-
lowing dynamic programming algorithm for the problem
where Lði; jÞ compute the optimal value of MWCS for
M½i . . .n� 1; 0 . . . j�,

Lði; jÞ ¼ max
Lði; j� 1Þ
bij þ Lðiþ 1; j� 1Þ
Lðiþ 1; jÞ

8<
:

Lði; 0Þ ¼ maxi � k<nbk0
Lðn� 1; jÞ ¼ max0 � k< jbn�1k 0 � i < n; 0 < j < m:

8>>>><
>>>>:

(8)

The recurrence is easy to follow. If bij is selected, we have
Lði; jÞ ¼ bij þ Lðiþ 1; j� 1Þ. Otherwise, if bij is selected, we
have Lði; jÞ ¼ maxfLði; j� 1Þ; Lðiþ 1; jÞg. The optimal
value of Lði; jÞ is thus defined by whichever is large. By fol-
lowing this argument, we can find the optimal weight of
MWCS for the lattice workflow at Lð0;mÞ. Since there are
only mn possible sub-problems, the time and space com-
plexity of this algorithm is OðmnÞ for augmented lattice
ðn�mÞ. However, when considering it in terms of the

Fig. 5. An example of a bronze standard medical imaging workflow chart (a). We view it as a lattice-like workflow shape (b) in our discussion.

Fig. 6. An example of lattice (4� 5) to show how its MWCS is computed.
Nodes 17, 14, and 5, together with edges e9;10 and e13;18, consist of the
MWCS.
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original workflow graph, the time and space complexity is
OðjV j þ 3jEjÞ.

Fig. 6 shows a running example of how the MMC of a lat-
tice (4� 5) workflow is computed where tasks 17, 14, and
5, together with memory channels e9;10 and e13;18, consist of
the MWCS of the augmented lattice.

Finally, the selected Gromacs workflow [9] can represent
a class of pipeline workflows in reality whose structure can
be viewed as a special case of fork&join (i.e., fan-out factor
is one) or lattice (i.e., either width or height is one). The
pipeline workflow is very common in scientific computa-
tions [34], [35], [36], its MMC is straightforward to compute.

5 DEADLOCK AVOIDANCE: AN APPLICATION

OF MMC

In this section, we leverage the results in the last section to
extend the banker’s algorithm for deadlock avoidance. Par-
ticularly, we make the only, but important improvement to
the banker’s algorithm by exploiting the MMC of the work-
flow dynamically to compute the localized maximum claim
associated with each task, instead of, like in the banker’s
algorithm, statically computing such values in advance.
With this improvement, compared to the algorithms in [27],
[28], the proposed algorithm can dramatically improve the
memory utilization.

Algorithm 1. MMC-Based Deadlock Avoidance
Algorithm

1: procedureMCB(Ii, v
i
j)

2: "Wi
j and Ri

j are local variables.
3: Wi

j  getWriteSetðvijÞ
4: if ðjWi

j j > rðtÞÞ then
5: "wait until there is enough free memory resources
6: return false
7: end if
8: " pretend to modify the system by assuming
9: " that vij has completed.
10: Ri

j  getReadSetðvijÞ
11: rðtÞ  rðtÞ � ðjWi

j j � jRi
jjÞ

12: allocði; tÞ  allocði; tÞ þ ðjWi
j j � jRi

jjÞ
13: updateNeedðneedði; tÞ; Ii; vijÞ
14: if ðSafetyCheckðIiÞÞ then " OðjIj2Þ
15: rðtÞ  rðtÞ � jRi

jj
16: allocði; tÞ  allocði; tÞ þ jRi

jj
17: return true " req safe
18: else
19: rðtÞ  rðtÞ þ ðjWi

j j � jRi
jjÞ

20: allocði; tÞ  allocði; tÞ � ðjWi
j j � jRi

jjÞ
21: restoreNeedðneedði; tÞ; Ii; vijÞ
22: return false " req unsafe
23: end if
24: end procedure

5.1 MMC-Based Deadlock Avoidance Algorithm

Algorithm 1 shows our MMC-based deadlock avoidance
(MCB) algorithm which is invoked when task vij in work-
flow instance Ii is to be scheduled. In the algorithm, rðtÞ is a
global variable representing the available memory resources
at t, allocði; tÞ records the amount of memory resources
that have been allocated to Ii, and needði; tÞ profiles the

maximum claim of the memory resources for the remaining
tasks in Ii after t. allocði; 0Þ is initialized to 0, and needði; 0Þ
is initialized to max claimði; 0Þ for Ii, which is defined as
MMCt¼0ðIiÞ. Both needði; tÞ and allocði; tÞ are global varia-
bles in our algorithm.

MCB first checks if the current available memory resour-
ces are sufficient to satisfy the request of the task (obtained
via getWriteSet()). If not, the task has to wait until sufficient
memory resources are available. Otherwise, the task is
assumed to be completed, and the corresponding data
structures associated with the instance Ii (i.e., rðtÞ, allocði; tÞ
and needði; tÞ) are updated accordingly. Subsequently, the

safety of granting the request of task vij is checked using the

subroutine SafetyCheck() as in classic banker’s algorithm.

Algorithm 2. The updateNeed Function

1: procedure UPDATENEED(needði; tÞ; Ii; vij)
2: graph getGraphðIiÞ
3: clearGraphðgraph; vijÞ " OðjV j þ jEjÞ
4: augment getAugmentGraphðgraphÞ
5: " OðjV j þ 3jEjÞ
6: if ðgraph ¼ fork&joinjjlatticeÞ then
7: P getMWCSðgraphÞ
8: if ðvij 2 PÞ then
9: "max claim needs to be recomputed
10: needði; tÞ  computeMMCðaugmentÞ
11: " OðjV j þ 3jEjÞ
12: end if
13: else " process general DAGs
14: dr graph getDerivedGraphðaugmentÞ
15: P getMWCSðdr graphÞ
16: if ðv 2 PÞ then
17: " by alg. [30], [37]
18: needði; tÞ  computeMWCðdr graphÞ
19: end if
20: end if
21: end procedure

The updateNeedðneedði; tÞ; Ii; vijÞ is a key function in the
MCB algorithm, which is used to update the needmatrix of Ii
by assuming vij is finished. The pseudo code of this function is

shown in Algorithm 2 where the time complexity of each
major step is also listed. In the algorithm the workflow graph
is first obtained and then cleared by clearGraphðÞ with two
major operations. First, the weight of node vij is set to zero (in

Oð1Þ time) to ensure it to be never considered in the MMC
computation. Second, when an incident edge (i.e., memory
channel) to vij is no longer used by its downstream tasks, set

its weight to zero (in OðjV j þ jEjÞ time). After this the cleared
graph is augmented (inOðjV j þ 3jEjÞ time), depending on the
shape of the inputworkflowgraph, the function uses different
strategies to update the need matrix (in OðjV j þ 3jEjÞ time),
either computing the optimal MMC as the updated need
matrix for the selected fork&join or lattice graphs or obtaining
the weight of the MMC, in upper bound or exact value, via
some existing algorithms such as [30], [37]. Note that in both
cases, the update is performed only if node vij is in the existing

MWCS of the augmented graph since only in this situation,
theMWCS’sweight could be changed.

The restore function performs reverse operations either
on the augmented graph in a similar logic to recover the

HE ET AL.: USING MINMAX-MEMORY CLAIMS TO IMPROVE IN-MEMORY WORKFLOW COMPUTATIONS IN THE CLOUD 1209



need matrix. Note that to enable the algorithm to work in
reality, we also need to empower the workflow scheduler
with the functions similar to those in clearGraphðÞ to ensure
that a finished task, together with its input memory channel
if no longer used, is never involved in the subsequent com-
putation. In this way, the maximum claim is localized and
monotonically non-increasing (possibly decreasing) as the
execution of the instance proceeds (i.e., dynamic computa-
tion, wheremax claimði; tÞ changes for different t).

As with the safety checking in the banker’s algorithm, the
safety checking algorithm in MCB iterates over all the concur-
rent instances in the workload and pools their allocated
memory until either the need matrix of the current instance
is satisfied (i.e., a safe state) or all instances are checked but
it is impossible to complete the current instance (i.e., an
unsafe state). This can be completed within OðjIj2Þ time
where jIj is the number of concurrent instances.

5.2 Algorithm Comparisons

We compare MCB with DAR in term of domination relation.
DAR is selected as it is a similar deadlock avoidance algo-
rithm designed for workflow-based workloads, which
aggregates the caching memory resources of the tasks to be
executed in the workflow instance as the maximum claim of
the remaining graph for safety checking at run-time [27].

Definition (Domination Relation). Given a system with a
number of processes and a set of resources, for two different
deadlock avoidance algorithms A and B, we define that A dom-
inates B iff any safety decision made by B can be also made by
A. We denote this relation by A! B.

Corollary 5.1. MCB dominates DAR [27] with respect to the
deadlock avoidance for workflow-based workloads when the
memory resources are constrained, i.e.,MCB! DAR.

The corollary is straightforward as the maximum claim
in DAR is computed by aggregating all the resource
requests of the remaining tasks, which is not less than the
MMC of the remaining graph.

6 PERFORMANCE STUDIES

By following the tradition in the workflow studies, we adopt
simulation-basedmethodology to investigate the performan-
ces of the proposed algorithms in terms of makespan and
memory resource utilization on selected workflow work-
loads, each being composed of multiple instances. The simu-
lated scheduler is built by using the discrete event simulation
package SMURPH [38] according to the model presented in
Section 3. It accepts the workflow instances from user sub-
mission. Each workflow instance, together with user’s esti-
mation of the memory resources for input and output data of
each task, is exploited by a deadlock resolver, a core component
of the scheduler, to compute the MMCs as its runtime maxi-
mum claims for deadlock avoidance in the computations.

6.1 Experimental Setup

In this section, we focus on the algorithm evaluations on the
two selected workflow structures, fork&join and lattice, and
leave other experimental work as on demand results, due to
space limitation.

Since we intend to study the performance of the pro-
posed algorithms in general cases, except for the workflow
graphs, we make no further assumptions on any a prior
knowledge of the tasks such as their computation times,
memory channel sizes, etc. As such, for all investigated
workflow structures (i.e., fork&join (3� 32) and lattice
(8� 12), we consider the task computation times to be uni-
formly distributed in ½500; 1;000� time units, while the mem-
ory channel sizes are uniformly distributed on ½1; 10�
memory units. Additionally, we also assume that an
unbounded number of compute nodes are available so that
the maximum DOC would never be constrained by the
compute nodes. This assumption is reasonable in our
research since the cloud environments could virtually pro-
vide workflow computation with infinite resources, and on
the other hand, we concern squarely with the minimum
memory claim of workflow computation with respect to its
maximum concurrency, which requires that the number of
computational node should not be a restrictive factor.
Finally, in each experiment, a total of 100 workflow instan-
ces are in each workload.

6.2 Simulation Results

In these experiments, we make a comprehensive perfor-
mance evaluation of the proposed algorithms by comparing
them with three reference algorithms, which bear the same
property to maximize the degree of concurrency (DOC)
with the available memory resources. The first is the bank-
er’s algorithm which is used as the baseline. The second is
DAR, an extended banker’s algorithm with an improvement
to compute the maximum claim for each instance at runtime
based on the aggregation of the memory requests of its
remaining tasks [27]. The last one is a deadlock detection
algorithm, called DDS [39], which is based on the detection
and recovery principle to resolve the deadlock. Selecting
DDS is only for performance reference as it is an alternative
way to the deadlock.

Fig. 7 shows that for the fork&join, except for the banker’s
algorithm, the performance of all others is highly competitive
with each other in terms of the makespan and DOC, which
are all much better than the baseline. On the other hand, com-
pared with DAR, MCB can work using much less memory

Fig. 7. Makespan comparisons between MCB and reference algorithms
for fork&join and lattice workloads when the memory channel sizes are
varied from 1 to 10 memory units.
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resources, which even has the same performance behavior
withDDS.

Unlike the fork&join, the lattice workload exhibits rela-
tively low average DOC (Fig. 7). And also, the relative per-
formances of these algorithms are changed significantly.
First, the performance of DDS is degraded dramatically,
especially when the memory is highly limited. This is
because the number of instances admitted by DDS (no
safety check), compared with other algorithms, is relatively
high, increasing high resource contentions. Second, DAR is
not always the performance leader, it is outperformed by
MCB when the memory is moderate due to its conserva-
tiveness in the safety checking (say, 2,000 in our case, it is
much clear if we zoom in the figure). MCB outperforms
DAR by maximizing the average DOCs (Fig. 7). Third,
again, like in fork&join, MCB, compared with other algo-
rithms, can tolerate limited memory for the computation at
cost of degraded performance since its maximum claim for
each instance is much less than that of DAR.

When considering the impact of multi-readers, we allow
the source task in fork&join to generate a single data file
that is simultaneously read by multiple tasks via the

memory caching service. By comparing with Fig. 7, we can
observe the performance changes from Fig. 8 due to the
impact of multi-readers. These changes are quite similar to
what we have observed for the lattice workload. We then
can follow the same arguments to account for these changes.

To validate our observations and further study these
algorithms, we compare how each algorithm utilize the
memory resources in term of Memory Utilization. To this
end, at any time point during the computation, we classify
the memory in the cloud into three classes. The first class
includes the free memory that is not being used by any
instance/task. The second class includes the memory that is
being used by some active instances/tasks. We thus name it
as active memory. Clearly, maximizing the active memory
will lead to better memory utilization. The last class
includes the remaining memory that is held by some inac-
tive instances. Thus we call it inactive memory. Here, an
active or inactive instance refers to whether the instance is
running or not. Inactive instances cannot proceed due to
insufficient memory, but their held memory (i.e., inactive
memory) cannot be reclaimed for other instances. Therefore,
inactive memory has adverse effects on the computations,
which is different from the free memory that can be used
whenever needed. Minimizing inactive memory can poten-
tially improve the memory utilization.

For comparison purpose, we normalize the uses of three
memory classes for both workloads by giving the ratio of
each class and show their numerical results in Figs. 9a
and 9b.

From Fig. 9a, for fork&join, we can observe that DAR has
the smallest amount of free and inactive memory among the
four algorithms whereas the banker’s algorithm is in the
worst case. This observation demonstrates that conserva-
tiveness in safety checking is not always detrimental to the
overall performance of the workload since appropriate con-
servativeness could reserve more memory resources for
those admitted instances to maximize their DOCs. This is
also evidenced by the observation that the overall perfor-
mance of DAR is better than that of MCB, even though it
dominates DARwith respect to the deadlock resolution.

Fig. 8. Makespan comparison between MCB and reference algorithms
for fork&join workloads with multi-readers.

Fig. 9. The memory caching resources for fork&join workloads are broken down into three classes to specify how they are used during the computa-
tion: Free memory refers to the memory that is not being used by any instance/task; active memory is the memory that is being used by some active
instances/tasks; in contrast, inactive memory means the memory is held by those inactive instances/tasks, which consists of the remaining memory.
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Additionally, we also found that the active memory ratio
of DDS is slightly better than that of MCB. We attribute this
phenomenon to the fact that DDS admits instances to exe-
cute without safety checking, which may lead to a higher
active memory ratio. However, this higher active memory
ratio may not necessarily result in higher performance as
shown in the figure due to the re-computation of victim
instances.

Similarly, for lattice as shown in Fig. 9b, the baseline is
still the worst. However, for MCB, it is competitive to, or
even better than DAR in terms of the active memory. We
know that DAR is more conservative than MCB in safety
checking. Thus, this observation is inconsistent with those
made in fork&join, which demonstrates again that the
impact of safety checking on the workload’s overall perfor-
mance is diverse, mostly depending on the shape of the
workflow graph. In this particular case, even though DAR
could reserve more memory resources for the admitted
instances, the average DOCs of each instance is not that
high as those in fork&join case to improve the makespan
performance (Fig. 7).

Since compared to other algorithms, MCB has low maxi-
mum claims, it thus can work with less memory resources
with degraded performance, which is an advantage over
others that allows MCB to carve the bits and pieces of
instance admission out of the safety checking.

Finally, we simply compare the performance ofMCB and
Lang’s algorithm for pipeline workloads (DAR is reduced to
Lang’s when acting on pipeline workloads).

In the experiment, we fix the memory capacity as 200

units and vary the number of pipeline stages from 4 to 22.
Fig. 10 shows the results where in all cases, MCB outper-
forms Lang’s algorithm, especially, as the number of stages
increases.

It is easy to understand that with the increments of the
stages, admission of new instances in Lang’s algorithm is
not affected too much because it is only determined by the
maximum memory that can be used by a single task. On the
contrary, in the same case, MCB can increase the caching
memory utilization by reserving more memory for active
instances. We also validated the explanation by comparing
the changes of memory utilization of both algorithms as the

stages increase, and observe that the relative ratios of three
memory classes remain largely unchanged in Lang’s algo-
rithm, while in our case, the ratio of active (inactive) mem-
ory gradually increases (decreases), with the growth of the
number of stages.

In summary, with these experiments, MCB exhibits
advantages over other compared algorithms in the follow-
ing aspects, which validates the values of MMC in memory-
constrained workflow computing.

1) For fork&join with high average DOCs, MCB has a
competitive performance with other compared algo-
rithms by maximizing the average DOCs.

2) For lattice with low average DOCs, MCB has a better
overall performance than others by ensuring high
average DOCs, especially, the memory resources are
increasing over a certain value.

3) For pipeline with low average DOCs, MCB consis-
tently outperform Lang’s algorithm across different
stages.

4) For all cases, MCB can work with less memory
resources with degraded performance, which pro-
vides the algorithm with a flexibility to control the
workload execution.

7 CONCLUSION

In this paper we proposed a concept of MinMax Memory
Claim that assures computational workflows to maximize
the concurrency with minimum memory resources. We
developed algorithms to compute it by reducing the prob-
lem to finding a maximum weighted clique in a derived
graph via some graph transformation techniques and inves-
tigated efficient optimal solutions to a class of representa-
tive workflow graphs. With these results, we further
designed a deadlock resolution algorithm that leverages the
concept of MMC to improve the banker’s algorithm by
localizing the maximum claim of each instance in work-
loads at run-time.

To show the advantages of the concept of MMC, we
implemented the proposed algorithms and applied them,
through a simulation study, to deadlock avoidance in work-
flow-based workloads when in-memory caching are con-
strained in the cloud. Our results show that the proposed
algorithms not only dominate the compared algorithms
with respect to deadlock resolution but also exhibit some
advantages over them to potentially improve the overall
workload performance.
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